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This paper develops the theory of electromagnetic radiation in the units covariant 
formalism incorporating Dirac's large numbers hypothesis (LNH). A direct 
field-to-particle technique is used to obtain the photon propagation equation 
which explicitly involves the photon replication rate. This replication rate is fixed 
uniquely by requiring that the form of a free-photon distribution function bc 
preserved, as required by the 2.7 K cosmic radiation. One finds that with this 
particular photon replication rate the units covariant formalism developed in 
Paper I actually predicts that the ratio of photon number to proton number in 
the Universe varies as t I/4 precisely in accord with LNH. The cosmological 
red-shift law is also derived and it is shown to differ considerably from the 
standard form of uR = const. 

1. I N T R O D U C T I O N  

This pape r  is the second in a series seeking to explore  the consequences  
for physics  of developing  a viable,  self-consistent ,  physical  theory incorpo-  
ra t ing Di rac ' s  (1937) large numbers  hypothes is  (LNH) .  In Paper  I (Adams  
1982) L N H  was presented,  the guiding pr inc ip le  of units covar iance  was 
developed,  and  a scalar  " f i e ld"  qo(x) which possessed certain unusual  
proper t ies  was in t roduced.  In this paper  I develop the theory of  e lect romag-  
netic  rad ia t ion  in the units covar iant  formalism.  

Because of recent  (Steigman,  1978; Canu to  and Hsieh, 1978, 1979) 
confl ic t ing reports  in the l i tera ture  concerning  the red-shif t  law, the black-  
body  spectrum,  pho ton  creat ion,  and scale covariance,  I present  a deta i led 
account  of a f ie ld- to-par t ic le  technique (Rober t son  and N o o n a n  1968) 
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which allows one to sensibly and self-consistently incorporate photon 
replication into the units covariant formalism. The photon replication rate is 
a priori unknown. However, if one assumes that the existence of the 2.7 K 
cosmic radiation requires the preservation of the form of the free-photon 
distribution function then the photon replication rate is determined uniquely 
with no input from LNH. The theory then predicts that the ratio of photon 
number to proton number in the Universe varies as t ~/4 in the multiplicative 
creation version of LNH, exactly as LNH requires (Adams 1982). This 
remarkable result is achieved without prior use of this a priori independent 
large number. 

The field-to-particle technique is applied to matter and is used to derive 
the in-geodesic equation as a consistency check. The technique is then used 
to derive the photon propagation equation which depends on the photon 
replication rate. Finally, the photon propagation equation is used to derive 
the cosmological red-shift law which differs from versions previously ap- 
pearing in the literature (Canuto and Hsieh, 1978, 1979; Dirac, 1974; 
Canuto et al., 1977). This result is of vital importance for future cosmologi- 
cal applications. 

The reader unfamiliar with sign conventions, notation, or the units 
covariant formalism is referred to Paper I for details. The powers of various 
quantities are collected here for convenience: 

H (g~,,,) = +2,  I I ( g  ~'') = - 2 ,  I I (u  '~) = - I (la) 

=n(d  =o, n ( # ) =  - i  (lb) 

I I ( G ) = g ,  I - [ (L )=  +I ,  r l ( p " ) = - g  (Ic) 

I I ( M )  = 1 -  g, Y[ ( T ~ )  = - 4 - g  ( ld)  

2. PROPAGATION EQUATIONS 

2.1. Matter Propagation Equation. One can obtain the particle propa- 
gation equation from the known properties of the energy tensor T u~ for the 
appropriate field (Robertson and Noonan, 1968). This field-to-particle 
technique will be presented here in detail and applied to matter particles to 
obtain the in-geodesic equation for matter as an example to illustrate its 
effectiveness. It will then be applied to photons to obtain the photon 
propagation equation. 

Let a curve C be constructed so that it always lies inside the space-time 
region where T ~ ~ 0, i.e., T ~ ~ 0 on C. Along C one can always construct 
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Gaussian coordinates so that the line element takes the form 

d~2 = dt 2 _ hijdx,dxJ, ( _  g),/2 = h]/2 (2) 

The four-dimensional volume element has the form 

1 
d 4V = -4-(. ( - g ) ' /2eu,ox dx"dx~dx~ (3) 

where e~,,,ox is the alternating symbol with e0123 = + 1. On C one has 

d4V= l hl/2eijkdxidxgdxkdt = dVdt (4) 

with e12 3 = l, and where dV is the element of three-dimensional proper 
volume of any t = const hypersurface on C. Let C be given parametrically 
by coordinates x ~'= ~0r  where x is any strictly monotone parameter. 
Then the tangent vector to C is given by 

r ~, _= d~ ~' 
d• (5) 

Let C be surrounded by an arbitrarily small world-tube. At any given 
time t the three-dimensional volume of this world tube is V. Assume that 
T ~'' is zero on the boundary of the world tube (the matter is concentrated 
along C). Assume further that at any time t one can choose V so small that 
for any arbitrary function oJ(x) possessing a Taylor 's  series expansion about 
C one has 

r~ fv~(X ) T~(  x ) dV= ,o( t, ~)t"~( t ) (6) 

Notice that since d4Vof (4) is a scalar and d~ is a scalar then d4V/dlr = r ~ dV 
is a scalar. Hence the tensorial properties of t u~ are identical to the tensorial 
properties of T "~ on C. 

The energy tensor for any closed system satisfies T ~ ,  ~ = 0. From (ld) 
one finds 

h~/i(h'/ZT~'~).~,= - TX~'F~,, + ( g - 2 ) T ~ " ~ 9  + TXxg~"~'~ (7) 

where (2) was used. Multiply (7) by the arbitrary function o~(x) to get 

1 (h ' /Z~176162176 T X ~ F ~ + ( g - 2 ) T ~ 9  9 ]  hi~2 , -- + T Xx g ~''~ 

(8) 
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Applying (6) to (8) gives 

rOfv 1 0 hi~20x a ( hl/2coT ~") dV= co,ot ~ 

+ co[- tx'TL,+( 

A d a m s  

(9) 

so use of (4) gives 

r~ lh,/2 oOd(h'/2coT"') dV = r ~ d--~ fvcoT~~ dV 

where the second integral 

+ r~ f ~O-L.n ( hl/2coT~n)eijkdxi dxJ dx k 
v Ox 

= ~_dx ( cot~'~ = cod __~__ ) t~'~ ,, 
7 co~ + ~(t"~ 

(10) 

of (10) vanishes because T ~ is zero on the 
boundary of V. Combining (10) with (9) and using the arbitrariness of co(x) 
gives 

d--~d '( t ~~ ~ )+  tX,,F~,, + (2_  g)t~fl_ ~ - tXxg ~ fl'~fl = 0  ( l la )  

t ~o 
- - r ~ = t  ~ ( l lb )  
r 0 

Since r" and t ~'' are tensors on C, 

t" =-- t"~ ~ (12) 

must be a vector on C from (llb).  Use of (12), (l lb),  (5), (3), and (1) gives 

fI ( t")  = II (t"") - f l ( r  '~) = 1-I ( T ~ )  + 1-I(r~ - [I(r ~) 

= - 4 - g +  l I ( d 4 V ) - I I ( d x ) - I I ( d ~ ) +  I I ( d l c ) = - g  (12a) 
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so ( l l )  becomes  

t ~ , a r  a = ( t %  ~ - t~ra ) f l ,~ / f l  = 0 

t ~ r a = t  ~a 
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(13a) 

(13b) 

as the basic "pa r t i c l e"  equat ions determined by T~a,  a = 0, where the last 
equality in (13a) follows f rom the symmet ry  of T ~a, i.e., t ~ a =  t at. This is 
valid for any symmetr ic  T ~a satisfying T~" ,  a = 0. 

N o w  specialize to mat ter  and not  radiation. Then TXx ~: 0 so txx ~: 0. 
Hence  (13b) gives 

Symmet ry  of t ~a requires 

tXrx ~ 0 (14) 

Since t ~ :* 0 by construct ion ( T  ~a :* 0 on C)  and since r ~ ~: 0 (every world 
line has a tangent)  then (14) and (16) require 

rXrx ~ 0 (17) 

i.e., C is never  null. Hence  C is either always timelike or always spacelike. 
By definit ion particles travel along t imelike curves so C is timelike. Since 
rXrx and tXrx are never zero one can define a new strictly mono tone  
pa ramete r  o along C by 

do  _ rXrx 

dx  rata 

giving 

do  ' t~ ,a t  a = 0 (19) 

f rom (16), (5), and (13a). 
Finally, one must  determine the meaning  of t ". F r o m  (12) and (6) 

t o =  t ~ 1 7 6 1 7 6  (20) 

(18) 

t~r a =  t %  ~ (15) 

t~rXrx = tXrxr ~ (16) 
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where N is the number of particles inside V with p0 the energy per particle. 
Notice that our assumption that T ~ is nonzero only inside a very thin 
world-tube means that the particles inside V have almost the same four- 
momentum p~. Hence, define a new path parameter X such that 

p~ dx  ~ do  
- d ~  -d-~ t ~ - N - l t ~  (21) 

By construction one has 

w ~ p ~ = E = m y ,  ~ - 2  ~ I - -  O 2 (22) 

if 60 ~ is an observer four-velocity and v is the relative velocity between 
particle and observer. Substitution of (21) into (19) and noting that 
1-I (N)  = 0 gives 

p ~ .  ~p~ = - p ~ d l n  N / d ~  = - p ~ p ~ U , ~ / U  (23) 

Use o fp  ~ = m u  ~' in (23) gives 

u~',,~u " + (ln m + ln  N ),,~u'~u ~' = 0 (24) 

and contraction with u~ shows that 

( lnm + ln N ) . ~ u ~  = O (25) 

so one obtains the in-geodesic equation (Adams, 1982; Dirac, 1973) 

uU, ~u ~ = 0 (26) 

as the equation of motion of free particles. Notice that this applies both to 
nonreplicating classical particles and to (possibly) replicating quantum 
particles. This is equivalent to the statement that classical particles do not 
replicate; their masses increase in A-units (Adams, 1982). The masses of 
quantum particles do not increase in A-units; they replicate (Adams, 1982). 

2.2. Photon Propagation Equation. Having demonstrated the field-to- 
particle technique by obtaining the in-geodesic equation for matter, I now 
apply the same technique to photons. Again one starts with a symmetric 
energy tensor satisfying T~'~, ~ = 0. The only difference is that now TXx = 0. 
Hence all the above results are valid down through (13). 

Since TXx = 0 then txx = 0 so from (13b) 

tXrx = 0 (27) 
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and (16) gives 
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rXrx = 0 (28) 

i.e., C is null. Photons must travel on null curves. Contracting (15) with t~ 
and using (27) shows that t ~ is null. Hence (27) and (28) require that r j' and 
t ~ be proportional, 

t ~ = A r  ~ (29) 

for some scalar function A ( x ) .  Since t" and r" are never zero A ( x ) ~  O. 
Define a new strictly monotone parameter a on C such that 

Then (13a) becomes 

do 
A - ' ( x )  (30) 

dr  

t ~ = d X r ~  = d ~  (31) 
do do 

t " , , t " = 0  (32) 

which shows that C is a null in-geodesic. 
Again, one must determine the meaning of t ". Again one finds (20) and 

hence (21) except that now N = Nv is the number of photons inside V and p0 
is the energy per photon. By construction one has 

toap~=Ev = hv (33) 

if to" is an observer four-velocity, h is Planck's constant (Adams, 1982), 

h =  hA( f l / cp )  g -2  (34) 

and v is the observed photon frequency. Again one finds (23) for photons. 
However, since p~ is null the steps leading to (26) fail. Equation (23) is the 
form of the propagation equation for photons in terms of the a priori 
unknown photon replication rate. Writing 

~ (35) 

where a is constant gives 

p ~ , , p "  = _ ap~pa~ , , / r p  (36) 
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where cp.. = cp,~ by (lb). Equations (33) and (36) together form the photon 
propagation equation which was the main objective of this section. 

The derivation of (36) illustrates a vital point which is usually over- 
looked in the literature. One often reads statements to the effect that since 
null geodesics are invariant under scale transformations, the photon propa- 
gation equation can always be written in the form (32), where t ~ is the 
photon four-momentum, o is the path parameter, and 

d x  ~ 
t ~ -  (37) 

do 

From the above derivation it is clear that this statement is false since (33) 
was neglected. The requirement that (33) hold fixes the photon path 
parameter to within an additive constant. Thus, while (36) can always be 
transformed into (32) by a rescaling of the path parameter, the physical 
content of (36) and (32) is completely different. In (36) pU is the photon 
four-momentum. In (32) t ~ is not the photon four-momentum. 

3. RED-SHIFT LAW 

Having obtained the photon propagation equation one can now derive 
the cosmological red-shift law. Taking the cosmological metric 

d'r 2 ---- dt 2 - RZ(  t ) h i j d x i d x  j (38) 

r o=ro=ro=0, , _ , .  F;j - 8 ; R / R  (39) 

where in (39) k denotes the time derivative of R(t), one finds 

- aPop"( ln  ep),,~ = - aPodln e p / d ~  

= p o , o p  ~' - p . F ~ o p p  + (2- g)po(ln f l ) , , ~ p "  

= d p o / d X  + p o p ~  + ( 2 -  g ) p o d l n  f l / d X  

= d p o / d X  + Podln R / d X  + ( 2 -  g ) p o d l n f l / d ~  (40) 

po R ( f l / ep )  2-  g ep z + ~- g = const 

Relative to a comoving observer (~0" = 6~) one has 

(41) 

Po = hu = h ~u( fl/~p ) g -  2 (42) 
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from (33) and (34) so 

vR~ 2+~-s = const (43) 

is the required cosmic red-shift law. This shows conclusively that it is not 
possible to specify independently the photon replication law (35) and the 
red-shift law (43). Unless the photon replication law is specified, the photon 
propagation equation and hence the red-shift law are completely unknown. 

It is of interest to examine the flat space-time limit of (38) in the LNH 
approximation. Then the red-shift law becomes 

~' = Po ( t / t o )  l -(2+ ,~)/g (44) 

which says that if 2 + a * g  the color of a laser beam changes as it 
propagates! I will return to this point later. 

4. BLACK-BODY RADIATION. FREE-PHOTON 
DISTRIBUTION FUNCTION 3 

The distribution function f ( x ,  p )  for particles or photons is the number 
density of particles or photons in phase space. This can be defined as 

f - N / V P  (45) 

where an observer sees N particles or photons occupying the physical 
volume V and having local Lorentz momentum components p in the range 

Po - ? < P < Po + A___pp2 (46) 

Then P - A p X A p Y A p  z. Since I I (V)  = 3 from (lc) 

I I ( P )  = ~ I I ( g ~ p ~ ' p  ~) = 3 I I ( M )  = 3(I - g) (47) 

one finds 

1-I(f)  = 3g- -6  (48) 

For an ensemble of free particles or photons (no collisions) one seeks to 

3Misner et~. (1973). 
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determine 
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along the path of the ensemble of free particles or photons. 
The free-photon propagation law is taken as (36) giving 

dp~= p gdln(fl/ep)g-2 p gdlnq~a+z-g (50) 
d~ d~ dh 

in a local Lorentz frame where ~ satisfies (33) and (21). Examine a very 
small bundle of photons occupying a rectangular phase space region at 2,. 
Since the phase space region is small the photons are all near each other in 
coordinate space and in momentum space. Hence one is considering a thin 
beam of almost monochromatic photons (a laser beam). 

A typical photon which was at (x,p) at ~t has moved to the point 

( x + p d X , p +  ApdX) (51) 

dlncp A= (g-Z)  dln'fl/q~" ( a + 2 -  g) (52) 
d~ d~, 

at h + d~ from (50). The phase space volume at ~ is 

VPIx = Axh  yAzApXApYAp ~ 

while from (51) the phase space volume at ~ + d2t is 

giving 

dVP dln(fl/op) (3a +6_3g) dlnep (55) 
d2t = 3A = (3g - 6 )  d)t d-~- 

so use of (35) and (55) in (49) gives 

df =lto-.~g)"'" ,, , dln(fl/ep)~ + f (4a+6-3g)  dln~Pd2t 

Since f is a coordinate scalar the result (56) is independent of the local 

VPIx +dX = Ax A yA zA pXA pVA pZ(1 + 3AdX ) 

(56) 

(53) 

(54) 

df fdln N_.~ _dln VP 
d X  = - -  J - d 2  

(49) 



Large Numbers Hypothesis.ll 431 

Lorentz frame used to derive it. Further, from (48) one can write (56) as 

f , , , p ~  + Of dp '~ 
Op ---~ d?t 4afp%p,,Jrp (57) 

which shows that (56) is units covariant as required. 
Two points are immediately evident from (56). First, the distribution 

function depends on ft. This is nothing more than a restatement of the fact 
that f is not a pure number. 

The second point is that f need not preserve its form as the photons 
move in the absence of collisions. In standard physics the right side of (56) 
is zero (this follows with fl = rp= 1). Hence, in standard physics in the 
absence of collisions i f f  = fo at ?t = ?to t h e n f  = fo for all X. For example, i f f  
is a Planck distribution at X = ?to 

fo = B(  eh~176176176 - 1) -1 , B = const (58) 

then for any subsequent ?t 

f = B(eh~/kr--  1) -L, h~ ho~o 
k T  koT o 

(59) 

However, in general (56) shows that i f f  = f0 at X = ?t o then 

f = B (q0/cp0)4~ +6-3g( flCpo/floep)6-3g(eh~/kr_ 1)-1, hu _ hou o 
k T -  koT o 

(60) 

for any subsequent X. 
The 2.7 K cosmic photon distribution is measured in A-units. If this 

distribution is in fact cosmological in origin, and if it in fact has been 
propagating freely without collisions for most of the age of the Universe, 
then from its observed Planck distribution today one concludes that in 
A-units the form of the distribution function must be preserved. Setting 
13 =cp (A-units) in (60) shows that this condition uniquely determines the 
photon replication rate to be 

a = � 8 8  (61) 

The significance of (61) should not be underestimated. It was obtained 
directly by correlating observation with theory with no input from LNH 
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except for the units covariant formalism. Further, I have found no other 
way to obtain (61). It seems that if the 2.7 K cosmic radiation did not exist 
this formulation of LNH would have had to stop at this point. 

Finally, I derive the evolutionary behavior of an initially black-body 
photon energy density in an isotropic, homogeneous Universe. Consider the 
number distribution function for photons per unit volume per unit frequency 
interval per unit solid angle n(u, t). Now 

dN = fdVdP = fh 3 p2dVdp df~ 

= n(u, t )dVdl ,  d~2 (62) 

n ( u , t ) = h 3 p 2 f  

= h31p2fo(ep/Cpo)  4 a + 6 - 3 g  (63) 

from o~p~ = hu, (34), (56), and renormalizing h so that h 0 = h A. From (63) 
the energy density per unit frequency interval for an isotropic photon 
distribution is 

Or(l,, t) = 4~rhpn(u, t) 

= 4'rrh4Afot~3(j~qgo//qgt~o)g-2(ep//qgo) 4 a + 6 - 3 g  (64) 

where again (34) was used. With f0 given by (58) integration of (64) over u 
gives the total radiation density in an isotropic photon black-body distribu- 
tion as 

py = fo~176 t )du 

= py0 (~0//~00) 4a + 8-4g (~0 J/~)2- g(P//p0)4 (65) 

where (59) was used. Use of the red-shift law (43) gives 

o, = O,o( R o / R  ) (66) 

as required. 
Notice that (66) is independent of the photon replication rate. This is to 

be expected since Or is the classical radiation density. Since classically 
photons do not exist, only Maxwell's equations, the fact that (66) says 
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nothing whatsoever about photons is a self-consistency check of the for- 
malism. 

5. PREDICTION OF THE N~,/N,,, RATIO 

One of the remarkable results of this paper is the fact that the existence 
of the 2.7 K cosmic radiation can be used to fix the photon replication rate 
as (61). An even more remarkable result is the prediction of the N y / N  m 
ratio. From Paper I 

N. ,=  N m o ( r / % )  ~-~ (67) 

so (35) gives 

N, INo, = ( N, ol imo)(  r / % )  ~ ~-~ (68) 

Use of (61) gives 

N~IN., = ( N~olNmo)( r l % ) - ( 2 +  g)/. 

= ( N.o IN.,o ) ( t / to  ) - (' + 2/~)/. 

(69) 

(70) 

where (70) follows from the LNH approximation for qo (Adams 1982). 
For additive or local creation g --- + 1 while for multiplicative creation 

g = - 1. (Adams, 1982) From (70) 

N v / N  m = t -3/4 (g  = + 1) (71a) 

Nv /Nm=t t / 4  ( g =  - 1 )  (71b) 

But (71b) is precisely one of the conclusions of LNH (Adams, 1982). Hence 
the assumption of multiplicative creation allows one to develop a formalism 
consistent with observation which actually predicts one of the large num- 
bers. Notice that the condition (71b) was nowhere imposed prior to its being 
derived here. This should be contrasted with (67), which, while it can be 
derived from this theory, was actually used in Paper I to set up the 
formalism in the first place so the argument is circular. 

This result more than any other leads one to believe that both (61) and 
(71b) have something to do with the way Nature works, if this formalism is 
applicable at all. In future papers the parameter g will be carried along in 
the formalism since it keeps track of mass units. However, from now on the 
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canonical LNH will have 

MULTIPLICATIVE CREATION 

g = - I  

Adams 

(72a) 

(72b) 

N., = Nmo( ePo/ep ) z (72c) 

N v = Nvo (%/q0 )9/4 (72d) 

cO~% = t o / t  (72e) 

G = Go(~p/%) (72f) 

% R ~ --~ / (72g) 

and the free-photon distribution function is preserved in A-units. 

6. DISCUSSION 

This paper has presented details concerning properties of electromag- 
netic radiation based on the units covariant formalism as a means to 
incorporate LNH into physics. It was shown that the photon propagation 
equation depends on the photon replication rate. It was also shown that this 
rate can be determined in terms of the parameters of the theory if one 
imposes the requirement that the form of the free-photon distribution 
function be preserved in A-units, as in standard physics. This requirement 
seems to be dictated by the observation that the 2.7 K radiation is 
cosmological and has a black-body distribution. Even more remarkable is 
the fact that for a unique choice of the parameter g, viz., g = -  1 corre- 
sponding to multiplicative creation, this theory predicts the same time 
dependence for N ~ / N  m as deduced from LNH. This particular large number 
was never used in the theory prior to this development. This lends strong 
support to the assertion that if this units covariant formalism has any 
validity at all, the case of multiplicative creation (g = -  1) seems to be 
preferred by Nature. 

Knowledge of the photon propagation equation allows the red-shift law 
to be derived. Use of the photon creation rate (61) allows the red-shift 
law (43) to be written as 

P/PO----- ( R o / / R ) ( f ~ o / ~ )  (2-g)/4 = ( R o / R ) ( t / t o )  3/4 (73) 



Large Numbers Hypothesis.ll 435 

where the last equality is the prediction of the canonical LNH. This appears 
to contradict "common sense" since everyone knows that 

vR  = const (74) 

can easily be derived by counting wave crests (SchrOdinger, 1957; Misner 
etal., 1973, p. 777). However, (74) is valid for a classical wave, not 
necessarily for photons. If photons in fact behave like classical waves then 
(74) is correct. Some workers in this subject believe that photons must  

behave like classical waves. This condition is then used in (73) to fix g by 
requiring g = + 2 (Canuto and Hsieh, 1978). 

However, there is nothing in physics which requires photons to behave 
like classical waves. Maxwell's equations certainly do not impose such a 
requirement since they do not contain photons at all. There is no experi- 
mental evidence on the subject other than that photons behave like classical 
waves over path lengths of a few astronomical units to within the accuracy 
of measurement. What one is essentially doing here is asking how the color 
of a laser beam changes over cosmological distances relative to comoving 
observers. This is completely different from asking how the frequency of 
classical waves changes over cosmological distances. 

In standard physics one writes 

p~ = h k ,  = hO , (75) 

where 0 is the phase of the wave and pu is the photon momentum. Here is 
where the question of normalization of path parameter enters. As discussed 
in Section 2, the path parameter is specified up to an additive constant by 

~o~p~ = hv  (76) 

for an observer with four-velocity ~o ~. There is no guarantee that the 
four-momentum of (76) is related to the gradient of the phase by (75). In 
this formalism there is a rescaling of the path parameter which involves % 

In standard physics one has no reason to treat photons as anything 
other than classical waves. In this units covariant formalism with LNH it is 
mandatory that photons be treated as photons, not necessarily as classical 
waves. Further, one has the ~o "field" which in principle is capable of 
affecting photon color. This is the first example of how r enters the 
formalism nontrivially so as to affect quantum dynamics. 

In all prior applications ~o entered by setting fl = ~  in the units 
covariant formalism. Here cp enters directly. The fact that this is the first 
application directly involving quantum phenomena (photons) is not acci- 
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dental. ~ is inherently connected with quantum physics, not with classical 
physics. As the theory is pushed closer to the quantum regime cp will enter 
directly more often. 
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